SUBSPACES AND QUOTIENT SPACES OF $(\Sigma G_n)_{i_p}$ AND $(\Sigma G_n)_{c_n}$

BY

W. B. JOHNSON AND M. ZIPPIN[†]

ABSTRACT

Let (G_n) be a sequence which is dense (in the sense of the Banach-Mazur distance coefficient) in the class of all finite dimensional Banach spaces. Set $C_p = (\Sigma G_n)_{l_p} (1 . It is shown that a Banach space X is isomorphic to a subspace of <math>C_p$ $(1 if and only if X is isomorphic to a quotient space of <math>C_p$.

1. Introduction

In [3] it was shown that if X is a subspace of a quotient space of C_p (1and X has a shrinking, finite dimensional decomposition (FDD, in short), then X $is isomorphic to a space of the form <math>(\Sigma E_n)_{l_p}$ $(1 or <math>(\Sigma E_n)_{c_0}$ $(p = \infty)$ with dim $E_n < \infty$. It follows easily from this that if X is a subspace of a quotient space of C_p and X* has the approximation property, then X is isomorphic to a complemented subspace of C_p . In particular, such an X is isomorphically both a quotient space and a subspace of C_p . Since it is clear that if X is a complemented subspace of C_p (1 then X and X* have the approximation property, asomewhat different approach seemed to be required for studying subspaces and $quotient spaces of <math>C_p$ which fail the approximation property. (Of course, Davie's construction [1] gives that C_p has subspaces and quotient spaces which fail the approximation property.)

However, it turns out that the results of [3] can be used to study arbitrary quotient spaces (and, by duality, subspaces) of C_p , if one utilizes the technique of [2, Th. IV.4]. This theorem asserts that if X^* is separable, then X has a subspace

[†] Both authors were supported in part by NSF GP-33578.

Received December 18, 1973

Y so that Y and X/Y each have a shrinking, finite dimensional decomposition. Thus if X is a quotient space of C_p , then Y and X/Y each have an $l_p(c_0, \text{ if } p = \infty)$ FDD by the results of [3]. Then one uses a variation of an observation of Lindenstrauss to show that X is a subspace of C_p .

Our notation and terminology agree with [3].

2. The main results

The observation of J. Lindenstrauss mentioned in the introduction is the following:

Let Y be a subspace of a Banach space X and assume that Y and X/Y embed into c_0 . Then X embeds into c_0 .

Indeed, let $T: Y \to c_0$ and $S: X/Y \to c_0$ be isomorphic embeddings into c_0 and let $Q: X \to X/Y$ be the quotient map. Then, since c_0 has the separable extension property (refer to [5]) and X is separable, there is an operator $\tilde{T}: X \to c_0$ with $\tilde{T}|_Y = T$. One easily checks that the operator $U: X \to c_0 \oplus c_0$ defined by $Ux = (\tilde{T}x, SQx)$ is an isomorphism into.

THEOREM 1. Let X be a quotient space of C_p $(1 . Then Xs i isomorphic to a subspace of <math>C_p$.

PROOF. Let us first treat the case $p = \infty$. If X is a quotient of C_{∞} then X^* is separable, so by [2, Th. IV.4] there is a subspace Y of X so that both Y and X/Y have shrinking FDDs. But then, by [3, Prop. 1], Y and X/Y both have c_0 decompositions, hence they both embed into c_0 and therefore, by Lindenstrauss' observation above, X embeds into c_0 .

Assume now that $1 . The argument here is similar to the argument when <math>p = \infty$, but we must repeat some arguments used in the proof of [2, Th. IV.4] to avoid the use of the separable extension property.

First, let (x_n, x_n^*) be a shrinking Markuschevich basis for X (that is, $x_n^*(x_k) = \delta_{n,k}$, $[x_n] = X$ and $[x_n^*] = X^*$; Mackey [4] proved that such a system exists in every space whose dual is separable). Next, choose integers $1 = m_1 < m_2 < m_3 < \cdots$ so that

(1) if
$$x \in [x_i]_{i=1}^{m_n}$$
 and $y \in [x_i]_{i=m_{n+1}-1}^{\infty}$ then $||x|| \le (1+n^{-1}) ||x+y||$

and

(2) if $x^* \in [x_i^*]_{i=1}^{m_n}$ and $y^* \in [x_i^*]_{i=m_{n+1}-1}^{\infty}$ then $||x^*|| \le (1+n^{-1}) ||x^*+y^*||$. To see that this is possible, assume that $1 = m_1 < m_2 < \cdots < m_n$ have been defined. Since $[x_n] = X$ and $[x_n^*] = X^*$ we may pick m_{n+1} large enough so that for

$$x \in [x_i]_{i=1}^{m_n}, \|x\| \le (1+n^{-1}) \sup\{x^*(x): x^* \in [x_i^*]_{i=1}^{m_{n+1}-1}, \|x^*\| = 1\} \text{ and}$$
for $x^* \in [x_i^*]_{i=1}^{m_n}$,

$$||x^*|| \le (1 + n^{-1}) \sup \{x^*(x) \colon x \in [x_i]_{i=1}^{m_{n+1}-1}, ||x|| = 1\}.$$

It is easy to see that $\{m_i\}_{i=1}^{n+1}$ satisfy (1) and (2).

Now set $E_n = [x_i]_{i=m_n}^{m_n+1-1}$ and $F_n = [x_i^*]_{i=m_n}^{m_n+1-1}$. Clearly (1) implies that (E_{p_n}) is an FDD whenever $p_n + 1 < p_{n+1}$, so [3, Prop. 1] gives that there is an increasing sequence (k_n) of positive integers so that (E_{k_n}) is an l_p decomposition. Set

 $Z_n = X / [E_1 + E_2 + \dots + E_{k_n - 2} + E_{k_n + 2} + E_{k_n + 3} + \dots]$

and let $Q_n: X \to Z_n$ be the quotient map. Note that

$$Z_n^* = [E_1 + \dots + E_{k_n-2} + E_{k_n+2} + \dots]^{\perp} = F_{k_n-1} + F_{k_n} + F_{k_n+1},$$

so we may assume (since we can pass to a subsequence of (k_n)), in view of (2) and [3, Prop. 1] that $(F_{k_n-1} + F_{k_n} + F_{k_n+1})$ is an l_q decomposition $(p^{-1} + q^{-1} = 1)$. Define now $Q: X \to (\sum Z_n)_{l_p}$ by $Qx = (Q_n x)$. Since $(F_{k_n-1} + F_{k_n} + F_{k_n+1})$ is an l_q decomposition it follows easily that Q^* is an isomorphism of $(\sum Z_n^*)_{l_n}$ onto $[F_{k_n-1} + F_{k_n} + F_{k_n+1}]$. Thus Q is continuous (and, incidentally, also onto). Note that the restriction of Q to $[E_{k_n}]$ is an isomorphism because (E_{k_n}) is an l_p decomposition, $QE_{k_n} \subset Z_n$, (Z_n) is an l_p decomposition and, by (1), $Q|_{E_{k_n}}$ is an isomorphic embedding whose inverse has norm ≤ 6 . Finally, set $Y = [E_{k_n}]$. We claim that $Y^{\perp} = [F_i]_{i \notin (k_n)}$. Obviously $[F_n]_{i \notin (k_n)} \subset Y^{\perp}$; to prove equality, let

$$y_j^* = \sum_{i=m_j}^{m_{j+1}-1} y^*(x_i) x_i^*.$$

Then $y_{k_n}^* = 0$ for all *n* and, by (2), the sequence

$$\left(\sum_{n=1}^{N}\sum_{j=k_n+1}^{k_{n+1}-1}y_j^*\right)_{N=1}^{\infty}$$

is bounded. Clearly, this sequence converges w^* to y^* and because the sequence

$$\binom{k_{n+1}-1}{\sum_{j=k_n+1}} y_j^* n=1$$

forms a basis for its span, by (2), the reflexivity of X implies that

$$\sum_{n=1}^{N} \sum_{j=k+1}^{k_{n+1}-1} y_{j}^{*}$$

converges to y^* in norm, by R.C. James' well-known theorem on boundedly complete bases. It follows that $y^* \in [F_i]_{i \notin (k_n)}$. Letting $G_n = [F_i]_{i = k_n + 1}^{k_n + 1^{-1}}$, we have that (G_n) is an FDD for Y^{\perp} . Hence by [3, Prop. 1], Y^{\perp} has an l_q FDD, whence (since $(X/Y)^* = Y^{\perp}) X/Y$ has an l_p FDD. Following the idea in Lindenstrauss' observation above, we define $S: X \to (\Sigma Z_n)_{l_p} \oplus X/Y$ by Sx = (Qx, x + Y). Then, since $Q|_Y$ is an isomorphism, S is an isomorphism. Since $(\Sigma Z_n)_{l_p} \oplus X/Y$ embeds into C_p , this completes the proof of Theorem 1.

REMARK. It is clear that C_{∞} embeds into c_0 , so every quotient space of c_0 is isomorphic to a subspace of c_0 . The corresponding statement for l_p is false; however, if (H_n) is a sequence of spaces which is dense (in the sense of the Banach-Mazur distance) in the set of all finite dimensional quotient spaces of subspaces of l_p , then the proof of Theorem 1 shows that every quotient space of l_p embeds into $(\Sigma H_n)_{l_p}$.

We prove now the converse to Theorem 1.

THEOREM 2. Let X be a subspace of C_p $(1 . Then X is isomorphic to a quotient space of <math>C_p$.

PROOF. For 1 the assertion follows easily from Theorem 1 by duality. $Indeed, if X is a subspace of <math>C_p$, $1 , then <math>X^*$ is a quotient space of C_q $(p^{-1} + q^{-1} = 1)$ hence by Theorem 1, X^* is isomorphic to a subspace of C_q and therefore $X = X^{**}$ is isomorphic to a quotient space of C_p .

Assume now that X is a subspace of C_{∞} . We repeat the argument of Theorem 1 to show that there is an isomorphism V from X* into C_1 . Since X is non-reflexive, we must exercise some care to make sure that V is w* continuous, so that X will be isomorphic to a quotient of C_{∞} .

Now since X^* is separable, there is a shrinking Markuschevich basis (x_n, x_n^*) in X and, as in the proof of Theorem 1, we select integers $1 = m_1 < m_2 < m_3 < \cdots$ so that (1) and (2) are satisfied, and we define E_n and F_n in exactly the same way as before. We will show that if $1 = k_1 < k_2 < \cdots$ is a sequence of integers thin enough then the following conditions are satisfied:

(3)
$$[F_{k_n}]_{n=1}^{\infty} = [E_i]_{i\notin(k_n)}^{\perp}$$

(4)
$$(E_{k_n-1} + E_{k_n} + E_{k_n+1})_{n=1}^{\infty}$$
 is a $c_0 - FDD$

and

(5)
$$(F_{k_n})_{n=1}^{\infty}$$
 is an $l_1 - FDD$.

As soon as (3)-(5) are satisfied, the proof is along the same lines as the previous one. Indeed, by (1) and the fact that $[x_n^*] = X^*$, we have that

$$([E_i]_{i=k_n+1}^{k_{n+1}-1})_{n=1}^{\infty}$$

is a shrinking FDD, hence by [3, Prop. 1], there is a blocking (U_n) of

 $([E_i]_{i=k_n+1}^{k_{n+1}-1})_{n=1}$

such that (U_n) is a c_0 decomposition. Let $Q_n: U_n \to X$ be the natural isometric embedding and define $Q: (\Sigma U_n)_{c_0} \to X$ by $Q(\Sigma u_n) = \Sigma Q_n u_n$, where $u_n \in U_n$. Obviously Q is an isomorphic embedding and hence $Q^*: X^* \to (\Sigma U_n^*)_{l_1}$ is onto. The kernel of Q^* is $[E_i]_{i\notin k_n}^{\perp}$ which is equal to $[F_{k_n}]_1^{\infty}$ by (3). Let

$$Z_n = X^* / [F_i]_{i \neq k_n - 1, k_n k_n + 1};$$

then $Z_n^* = [E_{k_n-1} + E_{k_n} + E_{k_n+1}]$ for each *n*. Set $T_n: Z_n^* \to X$ to be the natural isometric embedding and let $T: (\sum Z_n^*)_{c_0} \to X$ be defined by $T(\sum z_n^*) = \sum T_n z_n^*$ $(z_n^* \in Z_n^*)$. Then, in view of (4), *T* is an isomorphic embedding and hence *T** is a map of *X** onto $(\sum Z_n)_{l_1}$. Moreover, since $T^*|_{F_{k_n}}$ is an isomorphism whose inverse has norm ≤ 6 we obtain that $T^*|_{[F_{k_n}]_1}$ is an isomorphism because of (5). Finally, define $V: X^* \to (\sum U_n^*)_{l_1} \oplus (\sum Z_n)_{l_1}$ by $Vx^* = (Q^*x^*, T^*x^*)$. It is easy to verify that *V* is an isomorphic embedding (note that if $||x^*|| = 1$ and dist $(x^*, [F_{k_n}]_1^\infty)$ is big then $||Q^*x^*||$ is big since the kernel of Q^* is $[F_{k_n}]_1^\infty$; while if dist $(x^*, [F_{k_n}]_1^\infty)$ is small then $||T^*x^*||$ is big because $T^*|_{[F_{k_n}]_1^\infty}$ is an isomorphism).

Since V is w* continuous there is an onto map $S: (\Sigma U_n)_{c_0} \oplus (\Sigma Z_n)c_0 \to X$ satisfying $S^* = V$, hence X is a quotient of C_{∞} .

It remains to show that if (k_n) is thin enough, then (3)-(5) are satisfied. We start with (4). Given any sequence q_n with $q_n + 2 < q_{n+1} - 1$, it follows from (1) that $(E_{q_n-1} + E_{q_n} + E_{q_n+1})$ is an FDD which, since $[x_n^*] = X^*$, must be shrinking. Thus by [3, Prop. 1], there is a subsequence (k_n) of (q_n) (with $k_1 = q_1$) so that $(E_{k_n-1} + E_{k_n} + E_{k_n+1})$ is a c_0 FDD. This proves (4).

To prove (3) we use again the technique of [2, p. 90]. Let $k_n + 2 < k_{n+1}$ and let $S_n: X^* \to [F_{k_i}]_{i=1}^n$ be the natural projection defined by

$$S_n x^* = \sum_{j=1}^n \sum_{i=p_j}^{p_{j+1}-1} x^*(x_i) x_i^*$$

where $p_j = m_{k_j}$. Obviously S_n is linear, bounded, and w^* continuous. Also, for every $x^* \in [E_i]_{i \notin (k_n)}^{\perp}$, $||S_n x^*|| \leq (1 + n^{-1}) ||x||^*$. Indeed, if n is fixed we have from (2) that Vol. 17, 1974

$$||S_{n|F}|| \le 1 + n^{-1}$$
, where $F = [(F_{k_j}: 1 \le j \le n) \cup (F_i)_{i=k_{n+1}}^{\infty}]$.

But it is clear that F is contained in $(E_i: i < k_{n+1} \text{ and } i \notin (k_j))^{\perp}$. Since both these spaces have the same finite codimension, they are equal. Thus $||S_n x^*||$ $\leq (1 + n^{-1}) ||x^*||$ for $x^* \in [E_i]_{i \notin (k_n)}^{\perp}$. It is proved in [2, p. 90] that for every $x^* \in [E_i]_{i \notin (k_n)}^{\perp} S_n x^* \xrightarrow{W^*} x^*$.

In addition, in view of the above inequality, $||S_n x^*|| \to ||x^*||$. Since $X \subseteq C_{\infty}$, X has the Kadec-Klee property (that is, whenever

$$y^*, y_n^* \in X^*, y_n \xrightarrow{w^*} y^*$$

and $||y_n^*|| \to ||y||$, then also $||y_n^* - y^*|| \to 0$) and therefore $||S_n x^* - x^*|| \to 0$ for all $x^* \in [E_i]_{i \notin (k_n)}^{\perp}$. We thus have that $(F_{k_n})_1^{\infty}$ is an FDD for $[E_i]_{i \notin (k_n)}^{\perp}$ and (3) is proved.

Note that

$$(X / [E_i]_{i \notin (k_n)})^* = [E_i]_{i \notin (k_n)}^\perp = [F_{k_n}] \text{ and } X / [E_i]_{i \notin (k_n)}$$

is a quotient of a subspace of C_{∞} . Hence the argument of [2, p. 91] and our [3, Prop 1] imply that $X/[E_i]_{i \notin (k_n)}$ has a c_0 -FDD (G_m) determined by projections (P_m) such that the dual l_1 -FDD $(P_m^*[F_{k_n}]_1^{\infty})_{m=1}^{\infty}$ consists of disjoint blocks $[F_{k_i}]_{i=q_m}^{q_{m+1}-1}$ of (F_{k_n}) . It is now clear that if for every integer m we pick $q_m \leq i_m < q_{m+1}$ then the thinner subsequence, (F_{k_i}) will be an l_1 -FDD. This proves (5) and completes the proof of Theorem 2.

REFERENCES

1. A. M. Davie, *The approximation problem for Banach spaces*, Bull. London Math. Soc., 1973.

2. W. B. Johnson and H. P. Rosenthal, On w*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43(1972), 77-92.

3. W. B. Johnson and M. Zippin, On subspaces of quotients of $(\Sigma G_n)_{l_p}$ and $(\Sigma G_n)_{c_0}$, Israel J. Math. 13(1972), 311-316.

4. G. Mackey, Note on a theorem of Murray, Bull. Amer. Math. Soc. 52(1946), 322-325.

5. A. Sobczyk, Projection of the space m on its subspace c₀, Bull. Amer. Math. Soc. 47(1941), 938–947.

W. B. JOHNSON AND M. ZIPPIN

THE OHIO STATE UNIVERSITY

COLUMBUS, OHIO, U.S.A.

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

AND

M. Zippin