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ABSTRACT

Let (Gy) be a sequence which is dense (in the sense of the Banach-Mazur
distance coefficient) in the class of all finite dimensional Banach spaces. Set
C, = (Z‘G,,)lp(l <p< ), C,= (ZGp),,- It is shown that a Banach
space X is isomorphic to a subspace of o (1 < p £ w)ifand cnly if X is
isomorphic to a quotient space of Cp.

1. Imtroduction

In [3] it was shown that if X is a subspace of a quotient space of C, (1 < p < 0)
and X has a shrinking, finite dimensional decomposition (FDD, in short), then X
is isomorphic to a space of the form (EE,,),p (I<p<ow)or (XE,),, (p = )
with dim E, < co. It follows easily from this that if Xis a subspace of a quotient
space of C, and X* has the approximation property, then X is isomorphic to a
complemented subspace of C,. In particular, such an X is isomorphically both a
quotient space and a subspace of C,,. Since it is clear that if X is a complemented
subspace of C, (1 < p £ c0) then X and X* have the approximation property, a
somewhat different approach seemed to be required for studying subspaces and
quotient spaces of C, which fail the approximation property. (Of course, Davie’s
construction [1] gives that C, has subspaces and quotient spaces which fail the
approximation property.)

However, it turns out that the results of [3] can be used to study arbitrary
quotient spaces (and, by duality, subspaces) of C,, if one utilizes the technique of
[2, Th. IV.4]. This theorem asserts that if X* is separable, then X has a subspace
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Y so that Y and X /Y each have a shrinking, finite dimensional decomposition,
Thus if X is a quotient space of C,, then Y and X [Yeach have an [, (¢, if p = o0)
FDD by the results of [3]. Then one uses a variation of an observation of
Lindenstrauss to show that X is a subspace of C,.

Our notation and terminology agree with [3].

2. The main results

The observation of J. Lindenstrauss mentioned in the introduction is the
following:

Let Y be a subspace of a Banach space X and assume that Y and X |Y embed
into ¢o. Then X embeds into c,.

Indeed, let T: Y— ¢y and S: X /Y ¢, be isomorphic embeddings into ¢, and
let @: X — X /Y be the quotient map. Then, since ¢, has the separable extension
property (refer to [5]) and X is separable, there is an operator T: X — ¢, with
le = T. One easily checks that the operator U: X — ¢, @ ¢, defined by Ux
= (Tx,SQx) is an isomorphism into.

THEOREM 1. Let X be a quotient space of C, (1 <p < ). Then Xs i
isomorphic to a subspace of C,.

PrROOF. Let us first treat the case p = oo, If X is a quotient of C_, then X* is
separable, so by [2, Th. 1V.4] there is a subspace Y of X so that both Y and X /Y
have shrinking FDDs. But then, by [3, Prop. 1], Y and X /Y both have ¢, de-
compositions, hence they both embed into ¢y and therefore, by Lindenstrauss’
observation above, X embeds into c,.

Assume now that 1 < p < co. The argument here is cimilar to the argument

when p = oo, but we must repeat some arguments used in the proof of [2, Th.
1V.4] to avoid the use of the separable extension property.

First, let (x,,x}) be a shrinking Markuschevich basis for X (that is, x:(x,‘)

= O [*n] = X and [x}] = X*; Mackey [4] proved that such a system exists
in every space whose dual is separable). Next, choose integers 1 = my, < m,
<my < so that

(1) ifxe[x]z, and ye[x]em,, -1 then x| S (1+n"Y) |x+y]|
and
(2 if x*e[x}]" and y*e[x}]2n,, -4 then | x* | < +n=Y | x*+ p*|.

To see that this is possible, assume that 1 = m; <m, < -+ <m, have been



52 W. B. JOHNSON AND M. ZIPPIN Israel J. Math.,

defined. Since [x,] = X and [x}] = X* we may pick m,,, large enough so that
for

xelx]rmy, x| £ @ +n7Y) sup{x*(x): x* e [xF ]2y 7Y | x*|| = 1} and
for x* e [x* 1/,
[ x*
It is easy to see that {m,}/* ! satisfy (1) and (2).
Now set E, = [x,J7=+:"! and F, = [x{]/2:7 " Clearly (1) implies that (E, )
is an FDD whenever p, + 1 < p, 41, so [3, Prop. 1] gives that there is an increasing

| <@ +n7") sup {x*(x): xe [xIrep Y, |

x| =1}

sequence (k,) of positive integers so that (E, ) is an I, decomposition. Set
Z,=X|[E,+Ey+ - +E, _,+E 13 +E i3+ -]
and let Q,: X - Z, be the quotient map. Note that
Z¥=[E + - +E 2+ E 42+ 1" =F_1+F, +Fq 1

so we may assume (since we can pass to a subsequence of (k,)), in view of (2) and
[3, Prop. 1] that (F ., + Fy, + Fy,+1) is an I, decomposition (p~! + ¢~ = 1).
Define now Q: X —(ZZ,);, by Qx = (Q,x). Since (F, _; + F; + Fi +,) is an
1, decomposition it follows easily that Q* is an isomorphism of (XZ)), onto
[Fk,-1+ Fi, + Fi,+1]. Thus Q is continuous (and, incidentally, also onto). Note
that the restriction of Q to [E,] is an isomorphism because (E; ) is an I, de-
composition, QE, < Z,, (Z,) is an I, decomposition and, by (1), QI Ex. IS an
isomorphic embedding whose inverse has norm < 6. Finally, set Y = [E, ]. We
claim that Y* = [FJ;,,) Obviously [Flqu,, =Y to prove equality, let

mysq=1

yi= Tyt
i=my

Then y;* = 0 for all n and, by (2), the sequence

' N Eknse1—1 ©
*

(Z z yj)

n=1 j=ko+1 ~/N=1

is bounded. Clearly, this sequence converges w* to y* and because the sequence
knt1—1 * ) )
( Z J i )n=1
j=kn+1 y :

forms a basis for its span, by (2), the reflexivity of X implies that

N kn+1-1 .
Z z Vi

n=1 j=k +1
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converges to y* in norm, by R.C. James’ well-known theorem on boundedly
complete bases. It follows that y* € [F;],,). Letting G, = [F; faer -1, we have
that (G,) is an FDD for Y * Hence by [3, Prop. 1], Y* has an I, FDD, whence
(since (X /Y)* = Y*) X /Y has an I, FDD. Following the idea in Lindenstrauss’
observation above, we define S: X - (XZ,), ® X /Y by Sx = (Qx, x + Y). Then,
since Q |Y is an isomorphism, S is an isomorphism. Since (XZ,),, ® X /Y embeds

into C,, this completes the proof of Theorem 1.

ReMARK. It is clear that C_ embeds into ¢y, so every quotient space of c, is
isomorphic to a subspace of ¢, The corresponding statement for I, is false;
however, if (H,) is a sequence of spaces which is dense (in the sense of the Banach-
Mazur distance) in the set of all finite dimensional quotient spaces of subspaces of
l,, then the proof of Theorem 1 shows that every quotient space of [, embeds into
(SH),.

We prove now the converse to Theorem 1.

THEOREM 2. Let X be a subspace of C, (1 < p £ ). Then X is isomorphic
to a quotient space of C,.

ProoF. For 1 < p < oo the assertion follows easily from Theorem 1 by duality.
Indeed, if X is a subspace of C,, 1 < p < o0, then X* is a quotient space of C,
(p~' + q~' = 1) hence by Theorem 1, X* is isomorphic to a subspace of C, and
therefore X = X** is isomorphic to a quotient space of C,,.

Assume now that X is a subspace of C. We repeat the argument of Theorem 1
to show that there is an isomorphism ¥ from X* into C,. Since X is non-reflexive,
we must exercise some care to make sure that V is w* continuous, so that X will
be isomorphic to a quotient of C_,.

Now since X* is separable, there is a shrinking Markuschevich basis (x,, x¥) in
X and, as in the proof of Theorem 1, we select integers 1 = m; <m, <m; < -
so that (1) ‘and (2) are satisfied, and we define E, and F, in exactly the same way
as before. We will show that if 1 = k; <k, < --+ is a sequence of integers thin
enough then the following conditions are satisfied:

3 [Fk,,]f=1 = [Ei]:%t(k,.)
@ (Bx,-1+ Ey, + By 41)a=1 is a ¢g — FDD
and

(5) (Fkn):)=1 iS an ll b FDD.
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As soon as (3)-(5) are satisfied, the proof is along the same lines as the previous
one. Indeed, by (1) and the fact that [x}] = X*, we have that

((EJimii ey
is a shrinking FDD, hence by [3, Prop. 1], there is a blocking (U,) of

([El Il"‘-‘-‘.;t!n:-ll n=1
such that (U,) is a ¢, deccmposition. Let @,: U, —» X be the natural isometric
embedding and define Q:(XU,),,—» X by Q(Zu,) = XQ,u,, where u,cU,

Obviously Q is an isomorphic embedding and hence Q*: X* — (X Uy),, is onto.
The kernel of Q* is [E]j, which is equal to [F, ]T by (3). Let

Z, = X*|[Filistn-ticn kw15

then Z} = [E, -, + E;, + E; ] for each n. Set T,: Z*— X to be the natural
isometric embedding and let T:(ZZ}),, — X be defined by T(Xz)) = XT,z}
(z¥ € ZY). Then, in view of (4), T is an isomorphic embedding and hence T* is a
map of X* onto (XZ,),.. Moreover, since T*I Fu, 1S an isomorphism whose inverse
has norm £ 6 we obtain that T*| [Fenq, 15 an isomorphism because of (5). Finally,
define V:X* - (ZUY), ®(ZZ,), by Vx* =(Q*x*, T*x*). It is easy to verify
that V is an isomorphic embedding (note that if H x* ” =1 and dist(x*,[F} ]T) is
big then ” O*x* || is big since the kernel of Q* is [F, 1{°; while if dist(x*, [F; 17)
is small then || T*x* || is big because T* |, is an isomorphism).

Since V is w* continuous there is an onto map S:(ZU,)., ®(XZ,)co = X
satisfying S* = ¥, hence X is a quotient of C,,.

It remains to show that if (k,) is thin enough, then (3)~(5) are satisfied. We
start with (4). Given any sequence g, with g, + 2 < g,+,— 1, it follows from (1)
that (E,,_, + E,, + E,_4,) is an FDD which, since [x] = X*, must be shrinking.
Thus by [3, Prop. 1], there is a subsequence (k,) of (g,) (with k; = g,) so that
(Ey,-1 + E;, + E;_+,) is a ¢, FDD. This proves (4).

To prove (3) we use again the technique of [2, p. 90]. Let k, + 2 < k,,; and let
S,: X* - [F, Ji-1 be the natural projection defined by

n pj+1—1 .
Spx*= X 2 x*(x)x;
i=1 i=p;

where p; = my,. Obviously S, is linear, bounded, and w* continuous. Also, for
every x* €[El4 guy | Sex* | €@ +n~") [ x| *. Indeed, if n is fixed we have
from (2) that
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| Susl| 1+ 0", where F = [(F,,: 1 £j S n) UF),,,, ]
But it is clear that F is contained in (E,: i < k,4, and i ¢ (k;))". Since both these
spaces have the same finite codimension, they are equal. Thus “ S, x* ”
A +nY || x*| for x*€[EJsw, It is proved in [2, p. 90] that for every
*
x*e[E ] wn St x,

S,x*| - | x*|. Since X = C,,, X
has the Kadec-Klee property (that is, whenever

In addition, in view of the above inequality,

*
y*, yEe X, y, > y*

and | y¥| - | » |, then also | y¥ — y* | - 0) and therefore | $,x* — x* || -0 for
all x*€[E]J;, ., We thus have that (F, );° is an FDD for [E]J/; . and (3) is
proved.

Note that

X [[E) i ge)* = [Ei]i:é_(k,,) = [F,,] and X /[EJ;; .
is a quotient of a subspace of C,. Hence the argument of [2, p. 91] and our
[3, Prop 1] imply that X /[E;]; ., has a ¢,-FDD (G,,) determined by projections
(P,) such that the dual I,;-FDD (Pj[F, 17)r-; consists of disjoint blocks
LFy, ‘%’;;,’"'1of (Fy,). It is now clear that if for every integer m we pick g, < i,
< ¢+, then the thinner subsequence, (F,, ) will be an I,-FDD. This proves (5)
and completes the proof of Theorem 2. "
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