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ABSTRACT 

Let (Gn) be a sequence which is dense (in the sense of the Banach-Mazur 

distance coefficient) in the class of all finite dimensional Banach spaces. Set 

Cp = (ZGn)tp(1 < p < ~) ,  Coo = (.SGn)co. It is shown that a Banach 
space X is isomorphic to a subspace of Cp (1 < p =< oo) if and cnly i fX is 
isomorphic to a quotient space of Cp. 

1. Introduction 

In [3] it was shown that i fX is a subspace of a quotient space of Cp (1 < p < oo) 

and X has a shrinking, finite dimensional decomposition (FDD, in short), then X 

is isomorphic to a space of the form (]EE,)tp (1 < p < oo) or (EE,)co (p = oo) 

with dim E, < oo. It follows easily from this that if Xis a subspace of a quotient 

space of Cp and X* has the approximation property, then X is isomorphic to a 

complemented subspace of Cp. In particular, such an X is isomorphically both a 

quotient space and a subspace of C r Since it is clear that if X is a complemented 

subspace of Cp (1 < p < oo) then X and X* have the approximation property, a 

somewhat "different approach seemed to be required for studying subspaces and 

quotient spaces of Cp which fail the approximation property. (Of course, Davie's 

construction [-1] gives that Cp has subspaces and quotient spaces which fail the 

approximation property.) 

However, it turns out that the results of [-3] can be used to study arbitrary 

quotient spaces (and, by duality, subspaces) of Cp, if one utilizes the technique of 

[2, Th. IV.4]. This theorem asserts that if X* is separable, then X has a subspace 
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Y so that Y and X / Y  each have a shrinking, finite dimensional decomposition. 

Thus if X is a quotient space of Cp, then Y and X/Yeach have an Ip (Co, if p = oo) 

FDD by the results of [3]. Then one uses a variation of an observation of  

Lindenstrauss to show that X is a subspace of Cp. 

Our notation and terminology agree with [3]. 

2. The main results 

The observation of J. Lindenstrauss mentioned in the introduction is the 

following: 

Let Y be a subspace of a Banach space X and assume that Y and X /Y  embed 

into Co. Then X embeds into c o. 

Indeed, let T: Y ~  Co and S: X / Y - ~  Co be isomorphic embeddings into Co and 

let Q: x -~ x / Y  be the quotient map. Then, since Co has the separable extension 

property (refer to [5]) and X is separable, there is an operator •: X-*  c o with 

f i r  = T. One easily checks that the operator U: X-~ c o @ Co defined by Ux 

= ( f x ,  SQx) is an isomorphism into. 

THEOREM 1. Let X be a quotient space of Cp (1 < p <= oo). Then Xs i 

isomorphic to a subspace of C r 

PROOF. Let us first treat the case p = oo. If  X is a quotient of Coo then X* is 

separable, so by [2, Th. IV.4] there is a subspace Y of X so that both Y and X / Y  

have shrinking FDDs. But then, by [3, Prop. 1], Y and X / Y  both have c o de- 

compositions, hence they both embed into Co and therefore, by Lindenstrauss' 

observation above, X embeds into Co. 

Assume now that 1 < p < oo. The argument here is zimilar to the argument 

when p = ~ ,  but we must repeat some arguments used in the proof of [2, Th. 

IV.4] to avoid the use of the separable extension property. 

First, let (x~,x*) be a shrinking Markuschevich basis for X (that is, x*(xk) 

= ~n.k, [X~] = X and [x*] = X*; Mackey [4] proved that such a system exists 

in every space whose dual is separable). Next, choose integers 1 = ml < mz 

< ma < "" so that 

oo then [I x H < (1 + n-1)[I x + y II if x~ [xJ~'"=l and y [x,],=,,.+~-a = (1) 

and 

(2) r x*l"~ y* r x*l~~ then II x* II -< (1 + n- l ) I I  x .  + y .  II. i f x * ~ L  i.li=l and eL ~Ji=,..§ 

To see that this is possible, assume that 1 = ml < m2 < "" < mn have been 
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defined. Since [x.] = X and [x*] = X* we may pick m,+1 large enough so that 

for 

x Uxjr-,, Ilxll z ( a  + n-1 )  sup{x*(x):  * " , ~ . . + , - 1  x  LX, j , : ,  , I Ix*ll--  1} and 
mn for x* ~ I x ] t =  1, 

= r x  "]ran§ Ilx*ll < ( 1  ,j ,=,  , Ilxll = 1}  

It is easy to see that (m,}i"__+( satisfy (1) and (2). 
r lran+ i-- 1 [x.*q.m.+i-- 1 Now set En = LX,J/=m. and F.  = L , .,=,n. �9 Clearly (1) implies that (Ep.) 

is an FDD whenever p. + 1 < p.+ 1, so [3, Prop. 1] gives that there is an increasing 

sequence (k.) of positive integers so that (Ek.) is an Ip decomposition. Set 

g n = X / [ E  1 § E2 § ... § Ek.-2 § EL.+2 § Ek.+3§ ""] 

and let Q,: X ~ Z, be the quotient map. Note that 

Z *  = [E 1 + ... + Ek - 2 § Ek.+'- + ...].t = Fk _ x + Fk" § Fk,,+l ' 

so we may assume (since we can pass to a subsequence of (k,)), in view of (2) and 

[3, Prop. 1] that (Fk. -1  + Fk. + Fk.+l)  is an lq decomposition (p-1 + q-X = 1). 

Define now Q: X ~ ( ~ , Z , ) l , ,  by Qx = (Q,x). Since (Fk.-1  + Fk. + F , .+I )  is an 

I, decomposition it follows easily that Q* is an isomorphism of (EZ*)t" onto 

[Fk.-1 + Fk. + Fk.+ 1]. Thus Q is continuous (and, incidentally, also onto). Note 

that the restriction of Q to [Ek.] is an isomorphism because (Ek.) is an Ip de- 

composition, QEk. c Z, ,  ( z , )  is an Ip decomposition and, by (1), Q]ek. is an 

isomorphic embedding whose inverse has norm < 6. Finally, set Y = [Ek.]. We 

claim that y_L= [Fj]iC(k.)" Obviously [F.]~#(k.)c Y• to prove equality, let 

mj§ 
y*. = Y~ y*(xi)x*.  ,1 i=mj 

Then Yk*. - - - -  0 for all n and, by (2), the sequence 

( , ~  k.+~-l]~ Y*)~176 
n = l  j = k . + l  N = I  

is bounded. Clearly, this sequence converges w* to y* and because the sequence 

( ,k.+~-I  *, u~ 1 

j = k . + l  Y j ) n =  

forms a basis for its span, by (2), the reflexivity of X implies that 

N k,~+l-1 
x x 

n=l  j=k +1 
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converges to y* in norm, by R.C. James' well-known theorem on boundedly 

complete bases. It follows that y* ~ [FJi~k.v Letting Gn r F 1 k.§ 1 = L i J i = k n + l ,  we have 

that (Gn) is an FDD for Y ~. Hence by [-3, Prop. 1], Y• has an l~ FDD,  whence 

(since (X /Y )*  = Y• X / Y  has an Ip FDD. Following the idea in Lindenstrauss' 

observation above, we define S: X ~ (Y~Z,)I, @ X / Y  by Sx = (Qx, x + Y). Then, 

since Q Ir is an isomorphism, S is an isomorphism. Since (Y~Zn)~, @ X / Y  embeds 

into Cp, this completes the proof  of  Theorem 1. 

REMARK. It is clear that C~o embeds into Co, so every quotient space of  Co is 

isomorphic to a subspace of  Co. The corresponding statement for Ip is false; 

however, if (H,) is a sequence of spaces which is dense (in the sense of the Banach- 

Mazur distance) in the set of all finite dimensional quotient spaces of subspaces of 

lp, then the proof  of  Theorem 1 shows that every quotient space of Ip embeds into 

( Z n ~)l, . 

We prove now the converse to Theorem 1. 

THEOaEM 2. Let X be a subspace of Cp (1 < p < ~) .  Then X is isomorphic 

to a quotient space of C r 

PROOF. For  1 < p < ~ the assertion follows easily from Theorem 1 by duality. 

Indeed, if X is a subspace of  Cp, 1 < p < ~ ,  then X* is a quotient space of  Cq 

(p-1 + q - i  = 1) hence by Theorem 1, X* is isomorphic to a subspace of Cq and 

therefore X = X** is isomorphic to a quotient space of  C r 

Assume now that X is a subspace of  Coo. We repeat the argument of Theorem 1 

to show that there is an isomorphism V from X* into C1. Since X is non-reflexive, 

we must exercise some care to make sure that V is w* continuous, so that X will 

be isomorphic to a quotient of  Coo. 

Now since X* is separable, there is a shrinking Markuschevich basis (Xn, X*) in 

X and, as in the proof  of  Theorem 1, we select integers 1 = ml < m 2 < m 3 < -.. 

so that (1) and (2) are satisfied, and we define E~ and F~ in exactly the same way 

as before. We will show that if 1 = k~ < k2 < "" is a sequence of  integers thin 

enough then the following conditions are satisfied: 

(3) 

(4) 

and 

(5) 

F oo E ..1. [ J . = ,  = [ . 

E ~o (Ek.-1 + Ek. + k . + I ) . = i  is a c o -- F D D  

g 0o 
( k . ) .  = 1 is an I l -- FDD.  
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As soon as (3)-(5) are satisfied, the proof is along the same lines as the previous 

one. Indeed, by (1) and the fact that Ix* 1 = X*, we have that 

l" E -Ik.+ 1- lxoo 
L iJi=k~+l/n=l 

is a shrinking FDD, hence by r3, Prop. 11, there is a blocking (U.) of  

(rE ~k,,. t- t ~ 
L l.]i=kn+l/n=l 

such that (U.) is a c o deccmposition. Let Q~: U~ ~ X be the natural isometric 

embedding and define Q: (~U~)co-,X by Q(Yu.)= Y~Q.u., where u ~  U.. 

Obviously Q is an isomorphic embedding and hence Q*: X * ~  (Y~ U*)ll is onto. 
E i F ~o The kernel of Q* is [ i']iek, which is equal to [ ,,'ll by (3). Let 

Z.  = X*/ [Fdi , l< , , -  1,1<. s<.+ 1 ; 

then Z* = [Ek_ 1 + Ek. + Ek.+l ] for each n. Set T.: Z * o X  to be the natural 

isometric embedding and let T: (Y~ Z*)co -~ X be defined by T(E  z*) = Y~ T. z* 

(z* e Z*). Then, in view of (4), T is an isomorphic embedding and hence T* is a 

map of X* onto (EZ.)I,.  Moreover, since T*lrk. is an isomorphism whose inverse 

is an isomorphism because of (5). Finally, has norm < 6 we obtain that T* I ~F~.1, 

define V: X* -~ (~U*)l ,  0) (YZ~)tl by Vx* =(Q'x* ,  T'x*). It is easy to verify 

that V is an isomorphic embedding (note that if [I x* [] = 1 and dist(x*, ['Fk.1~ ~ is 

big then ]1 Q'x* II is big since the kernel of Q* is rFkJ~ ;  while if dist (x*, [Fk.1~ ~ 
is small then II II is big because T* IEFk,1~ ~ is an isomorphism). 

Since V is w* continuous there is an onto map S: (Xtln),o~(EZ.)Co--'X 
satisfying S* = V, hence X is a quotient of C~o. 

It remains to show that if (k~) is thin enough, then (3)-(5) are satisfied. We 

start with (4). Given any sequence q. with q. + 2 < q.+~ - 1, it follows from (1) 

that (E~_t + Eq. + Eq.+t) is an FDD which, since [x*] = X*, must be shrinking. 

Thus by [3, Prop. 1], there is a subsequencc (k.) of  (q,) (with k 1 = qt) so that 

(Ek.-1 + Ek, + Ek.+l) is a Co FDD. This proves (4). 

To prove (3) we use again the technique of [2, p. 90]. Let k. + 2 < k.+ 1 and let 

S~: X* ~ [Fk,]~= 1 be the natural projection defined by 

SnX* ~ p j + t - 1  
= X X*(Xi)X~ 

j f t  l--p./ 

where p / =  rnk~. Obviously S. is linear, bounded, and w* continuous. Also, for 

every x*~['EJ~(k.), HS.x*[I <(1  + n -1) llxll*. Indeed, if n is fixed we have 

from (2) that 
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[[ Snip. [[ < 1 + n - I ,  where g = [(tkj: 1 < j  < n) U(fi),~kn+l ]. 

But it is clear that F is contained in (E,: i < kn+ I and ir • Since both these 

spaces have the same finite codimension, they are equal. Thus tlsnx*JI 
<(1  + n -1) [[x*][ for x*~[EJ~(k . ) .  It is proved in [2, p. 90] that for every 

W* 
E • X* ~ [ ill ~ (kn) SnX* )- X*. 

In addition, in view of the above inequality, [1 S~x* 11-  II ~* II, Since X ~ Coo, X 

has the Kadec-Klee property (that is, whenever 

W* 
y*, y* E X*, yn ) y* 

and II y*II-" l[ y I[, then also I l y * - y ' l [  -- '~ and therefore II S , x * - x *  [ I - ,o  for 
E • oo all x* E [ ,], ~ (k.). We thus have that (FR.)I is an FDD for [ E J ~  (k~) and (3) is 

proved. 

Note that 

( x / [ E , ]  • = [ E i ] i r  [FR,,] and X/[EJ~r ) 

is a quotient of a subspace of Coo. Hence the argument of [2, p. 91] and our 

[3, Prop 1] imply that X / [ E J i  r (k.) has a co-FDD (Gin) determined by projections 
* F do Oo (P,n) such that the dual /1-FDD (Pro[ k.]l)m=t consists of disjoint blocks 

F lq~+,- l^*- k*J*=qr~ ~'~ ( F J .  It is now clear that if for every integer m we pick q~ < in, 

< qm+l then the thinner subsequence, (Fk,)  will be an II-FDD. This proves (5) 

and completes the proof  of Theorem 2. 
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